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Abstract  — A novel full-wave technique, called EVFE 

method, is proposed to simulate the time-domain envelopes 
of electromagnetic waves. Based on finite element method 
(FEM) solutions, EVFE method introduces the circuit 
envelope simulation concept into electromagnetics the first 
time. Compared to traditional time-domain simulation 
techniques such as FDTD or FETD methods, only the 
signal envelope need to be sampled in EVFE simulation. 
Therefore it can bring magnitudes of computation savings 
when it is applied to the cases where signal 
envelope/carrier ratios are very small. In this paper, 2-D 
microwave guided-wave examples are presented as proof 
of concepts. 

I. INTRODUCTION 

Traditional electromagnetic transient simulation 
techniques such as finite-difference time-domain 
(FDTD) methods or finite-element time-domain (FETD) 
methods have become very popular for the past two 
decades. Compared to their frequency domain 
predecessors, their capability to generate time-domain 
waveforms straightforwardly brings many advantages in 
simulating broadband system responses or identifying 
circuit parasitics [1]-[2]. They have also been developed 
for a co-simulation coupled with active/nonlinear 
devices in [3]-[4]. However, the time-step in simulation 
is usually required to be very small because of the CFL 
stability condition. Even when their implicit versions 
[5]-[6] are used, the time-domain waveform has to be 
sampled at minimum twice of the highest signal 
frequency to satisfy the Nyquist sampling criterion 
regardless of the signal bandwidth.  

 However, modern wireless and optical 
communication signals often employ digital 
modulations on the RF carrier or RF modulations on the 
optical carrier. The signal bandwidths in these systems 
are usually very narrow relative to their carrier 
frequencies. When transient simulators are used for this 
case, much of the computation is wasted. To address 
this limitation, a new circuit simulation technique called 
Circuit Envelope has been recently introduced in [7] and 
exploited in HPEEsof’s ADS or MDS design software. 
By discretizing and simulating the signal envelopes on 

defined carrier frequencies, it has proven to be much 
more efficient than transient simulators like SPICE for 
narrow band cases. 

   Based on the similar concept, a novel 
electromagnetic solver called EVFE technique is 
proposed in this paper. Derived rigorously from 
Maxwell’s equations, EVFE technique is able to 
simulate time-varying complex envelopes of 
electromagnetic waves. The essential idea is to perform 
time marching of the signal envelope on top of the 
frequency-domain FEM solutions. Since only the signal 
envelope needs to be sampled, much sparser time-step 
can be used than those in FDTD or FETD techniques, 
which results in much higher computation efficiency 
when the envelope/carrier ratio is small. Beside all the 
advantages as a full-wave time-domain technique, 
EVFE techniques also have considerable computational 
advantages over frequency-domain techniques like 
FEM, because there is no need to solve the boundary 
value problem once again for each different frequency. 
The formation and inversion of the finite element matrix 
only need to be done once for the defined carrier 
frequency, if a direct solver is used. The algorithm is 
also of low complexity and can be easily written by 
modifying a frequency-domain FEM code. 

In this paper, for simplicity, only the EVFE 
techniques based on 2-D FEM is considered. There 
should not be any intrinsic limits to extend it for 3-D 
full-vector modeling of arbitrary guided-wave 
structures. This paper is organized as follows. The 
EVFE formulations are first derived from the scalar 
wave equations in chapter II, followed up by the 
implementation of traveling wave boundary conditions. 
Then two numerical examples are then presented in 
chapter III to validate the EVFE technique.  Finally 
conclusion of this paper is given in chapter IV. 

II. EVFE FORMULATIONS AND BOUNDARY CONDITIONS 

Considering the 2-D TEM or TE wave propagating in 
a non-lossy planar waveguide, the time-domain wave 
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equation regarding to longitudinal component of 
magnetic field is: 
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By defining the carrier frequency ω,  the field 
component can be represented in a modulated signal 
format: 
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where V(t) is the time-varying complex envelope at the 
carrier frequency. It should be noted that the expression 
(2) is not unique but dependent on the definition of 
carrier frequency. Normally the carrier is chosen to be 
the center frequency of the interested frequency band in 
order to minimize the envelope frequency. Substituting 
(2) in (1) and dividing both sides by tje ω yields the 
partial differential equation (PDE) for the envelope: 
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where K is the free space wave number for the carrier 
frequency. rε  and rµ  are the relative permittivity and 
permeability. Let’s call (3) an envelope equation. It is 
noticed that the envelope equation reduces to scalar 
Helmholtz equation when V is time-independent, on 
which the frequency-domain FEM is based. On the 
other hand, if the carrier frequency ω  is chosen to be 
zero, the envelope equation is also equivalent to the 
time-dependent wave equation on which the implicit 
FETD method is based. Therefore, one can easily solve 
it just like dealing with the other time-dependent wave 
equations. The inner product of (3) with a testing 
function T leads to the weak form 
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where the boundary Γ consists of PEC boundary Γc of 
the planar waveguide, excitation truncation boundary Γe 
and the termination truncation boundary Γt. Γc is natural 

boundary condition and has no contribution to the right-
hand side path integral. For the truncation boundaries, 
the first-order absorbing boundary condition (ABC) is 
applied based on the traveling-wave assumption. The 
frequency-domain version of ABC is always a good 
approximation to use if the signal bandwidth is quite 
narrow. However, rigorous implementation of ABC in 
EVFE simulation requires special handling as follows. 
First let’s consider the termination boundary Γt. The 
traveling wave assumption in time-domain is   
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where c is the free space light speed. Substituting (2) in 
(5) leads to the envelope boundary condition 
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The boundary condition for the excitation can be 
derived in the similar way 
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where Vi is the envelope of incident field. (6) and (7) 
should be substituted into the right-hand side path 
integral of (4). Expanding the envelope variable using 
2-D FEM basis functions Wj, the application of 
Galerkin’s process results in a system of ordinary 
differential equations 
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where v is the coefficient vector of V and [T], [B] and 
[S] are time-independent matrics defined by 
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To discretize (8) in time-domain, the Newmark-Beta 
formulation [6] can be used   
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where v(n) = v(n∆t) is the discrete-time representation 
of v(t). β is a constant. Similar to what is done for FETD 
method in [5]-[6], one can prove that β=1/4 leads to an 
unconditionally stable two-step update scheme with 
minimum dispersion error also for EVFE technique, 
which is 
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To solve the above equations, the matrix in the left-hand 
side needs to be inversed. Note this matrix is time-
independent, it needs to be filled and solved only once if 
a direct sparse-matrix solver is used.  

III. NUMERICAL RESULTS 

Two numerical examples are presented to validate the 
above formulations. The first example is an empty 
planar waveguide, depicted in Fig.1. The waveguide is 6 
meter long and 4 cm wide. Incident wave is a modulated 
Gaussian pulse, in the form of 
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where GHzff 91.2,2 == πω , nst 0.3=σ . For this 
excitation, the envelope/carrier frequency ratio is about 
10 percent. Therefore a time-step nst 5.1=∆  is used for 
the EVFE simulation, which is much wider than the 
carrier wavelength. The total number of time steps used  
is 16. To get the same precision, an explicit FDTD 
method needs a number of time steps at least 100 times 
of that and an implicit FETD simulation needs at least 
10 times of that. Since there is no discontinuity, the 
electromagnetic wave should propagate without 
dispersion. Fig.2 plots the field envelope along the 
waveguide at different time steps, where a nice traveling 
wave effect is observed. 

The second example is again the same planar 
waveguide, but with two double irises in the middle. As 
depicted in Fig.3, the length of the iris is 1.5 cm. The 
two apertures are constructed 5 cm away from each 
other, to intentionally form a resonance peak around the 
carrier frequency. The same excitation and time-step as 
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Fig.1 Sketch of an empty planar waveguide. 

ΓΓ

Fig.3  Sketch of an planar waveguide with two 
double irises.  
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Fig.2  The magnetic field envelope along the waveguide 
for different observation time.  
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in the first example are used. After the simulation, the 
time-domain waveform is recorded in both the 
excitation plane and the termination plane. As shown in 
Fig.3, the long tails of the signals are observed in both 
return wave and through wave, which indicates a sharp 
frequency resonance. The total number of time steps is 
60. By applying Fourier transform to the time-domain 
waveform, the S parameters are generated and plotted in 
Fig.4 and Fig.5 against the frequency-domain FEM 
results. Very good agreements can be seen from those 
comparisons, which further validates the approach.  

IV. CONCLUSION 

A novel full-wave electromagnetic simulation method 
called EVFE technique has been proposed based on the 
envelope simulation concept. When applied to the cases 
with the slowly varying signal envelope on top of fast 

oscillating carrier, it can provide magnitudes of 
computation saving over the traditional time-domain 
techniques. Two 2-D numerical examples have been 
presented to validate the approach. It can also be 
considered as a more general electromagnetic 
simulation frame that unites the frequency-domain and 
time-domain techniques, since it reduces to frequency-
domain FEM when the envelope is constant and to 
FETD when the carrier frequency is chosen to be zero.     
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Fig.4  Time domain waveform for (a) return 
wave (b) through wave. 
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Fig.5  Comparison of S11 between EVFE result (--) 
and FEM result (*).   
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Fig.6  Comparison of S21 between EVFE result (--) 
and FEM result (*).   
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